neural/main.py
2024-06-13 23:28:24 +03:00

96 lines
3.2 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import numpy.random
import scipy.special as sc
class NeuralNetwork:
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
self.inodes = input_nodes
self.hnodes = hidden_nodes
self.onodes = output_nodes
self.lr = learning_rate
self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
self.activation_func = lambda x: sc.expit(x)
pass
def train(self, inputs_list, targets_list):
inputs = np.array(inputs_list, ndmin=2).T
targets = np.array(targets_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_func(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_func(final_inputs)
output_errors = targets - final_outputs
hidden_errors = np.dot(self.who.T, output_errors)
self.who += self.lr * np.dot((output_errors * final_outputs * (1.0 - final_outputs)), np.transpose(hidden_outputs))
self.wih += self.lr * np.dot((hidden_errors * hidden_outputs *(1.0 - hidden_outputs)), np.transpose(inputs))
pass
def query(self, inputs_list):
inputs = np.array(inputs_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_func(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_func(final_inputs)
return final_outputs
if __name__ == "__main__":
n = NeuralNetwork(784, 100, 10, 0.3)
storecard = []
# print(n.query([1.0, 0.5, -1.5]))
with open("/home/gemini/PycharmProjects/neural/mnist_train.csv", 'r') as f:
content = f.readlines()
# print(content[0])
# print(len(content))
for record in content:
all_val = record.split(',')
inputs = (np.asfarray(all_val[1:])/255.0 * 0.99) + 0.01
targets = np.zeros(n.onodes) + 0.01
# print(all_val)
targets[int(all_val[0])] = 0.99
# print(targets)
n.train(inputs, targets)
with open("/home/gemini/PycharmProjects/neural/mnist_test.csv", 'r') as f:
testing = f.readlines()
for record in testing:
all_values = record.split(',')
correct_answer = int(all_values[0])
print(correct_answer, "Истинное значение")
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
outputs = n.query(inputs)
net_answer = np.argmax(outputs)
print(net_answer,"Ответ сети")
if net_answer == correct_answer:
storecard.append(1)
else:
storecard.append(0)
pass
# print(storecard)
storecard_array = np.asarray(storecard)
print("Эффективность = ", storecard_array.sum() / storecard_array.size)
# image_array = np.asfarray(test_val[1:]).reshape((28, 28))
# plt.imshow(image_array, cmap='Greys', interpolation='None')
# plt.show()
# print(n.query((np.asfarray(test_val[1:])/ 255.0 * 0.99) + 0.01))